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Abstract

The paper deals with double stochastic differential equations. Ex-
istence and uniqueness are obtained under a Hölder-type hypothesis.

The convergence in probability of the successive approximations in
the Hölder norm and the existence of a weak solution for continuous
coefficients are also proved.

Under an additional independence hypothesis, the mean square
convergence of fractional step approximations is shown. This last
result is used in order to deduce a comparison result and as a conse-
quence the existence of a strong solution in the case when the ”double
”noise is additive.

Finally, a counterexample which shows that the comparison result
does not work for double noise depending on the state is given.

1 Introduction

The multiple stochastic integral is introduced by Meyer [10] for martingales as
differentials. The concept allows to consider the associated stochastic equa-
tions (see [18]). We refer to these equations as multiple stochastic equations.
Such stochastic equations include the Itô equations, integro-differential and
as well some classes of Volterra equations.
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In [18] we considered double stochastic equations under the Lipschitz con-
dition and we addressed the problem of convergence of some approximation
schemes.
In the present paper we consider double Itô equations with the Lipschitz
condition replaced by a Hölder-type one.
We obtain the existence and uniqueness of the strong solution and, by using
an exponential Doob type inequality for stochastic integrals that are not
martingales, we deduce the convergence in probability (in the Hölder norm)
of the successive approximations.
By means of the standard procedure (Skorohod representation of the weak
convergence) the existence of a weak solution is shown for continuous coeffi-
cients.
Next, under an independence assumption, we show the convergence of the
fractional step approximations to the unique solution of the equation.
Such approximations are used if other more traditional methods are not
easy to apply, especially for numerical treatment, qualitative properties (as
positivity, comparison, etc.).
The fractional step (or splitting up) method is used in Rascanu and Tudor
[13] for finite dimensional Itô equations, in Belopol’skaya and Nagolkina [2],
Bensoussan-Glowinsky and Rascanu [3], Goncharuk and Kotelenez [6], for
different classes of stochastic partial equations.
We also use the splitting up method in order to obtain a comparison result for
double stochastic equations with additive ”double” noise and in particular
we derive the existence of strong solution for continuous and bounded double
drifts.
Finally, we give a counterexample which shows that the comparison result
fails if the double diffusion coefficient is state dependent.
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2 Existence and Uniqueness of Strong Solu-

tions

Let
(
Ω,F , P, (Ft)0≤t≤T

)
be a complete filtered probability space and {Wt}0≤t≤T ,{

W̃t

}
0≤t≤T

be Ft-Brownian motions.

Define
C2(t) = {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ t} ,

C2(a, b) = {(t1, t2) : a ≤ t1 ≤ t2 ≤ b} .

Let F (t, x), G(t, x) : [0, T ]×R −→ R, F̃ (t1, t2, x), G̃(t1, t2, x) : C2(T )×R −→
R be measurable functions and ξ be a F0-measurable random variable.
Define LS = {α : R+ −→ R+ : α is strictly increasing, continuous, concave,

and
∫ 1

0+
du
α(u)

=∞
}
.

Obvious α1(u) = Lu, L > 0, α2(u) = x |log x|1−ε , α3(u) = x |log x| |log |log x||1−ε ,
0 < ε < 1, belong to LS and α2, α3 are not Lipschitz. Also if α1, α2 ∈ LS,
c1, c2 ≥ 0, c1 + c2 > 0, then c1α1 + c2α2 ∈ LS.
We consider the following double stochastic differential equation

Xt = ξ +

∫ t

0

F (s,Xs)ds+

∫ t

0

G(s,Xs)dWs+∫
C2(t)

F̃ (s1, s2, Xs1)ds1ds2 +

∫
C2(t)

G̃(s1, s2, Xs1)dW̃s1dW̃s2 , 0 ≤ t ≤ T. (2.1)

We introduce the following hypotheses on the initial data and the coefficients
of (2.1).
(H 1) (Growth condition on F,G): there exists a constant K > 0 such that

|F (t, x)|2 + |G(t, x)|2 ≤ K
(
1 + |x|2

)
, ∀t ∈ [0, T ] , x ∈ R.

(H̃ 1) (Growth condition on F̃ , G̃): there exists a constant K̃ > 0 such that
for all (s1, s2) ∈ C2(T ), x ∈ R,∣∣∣F̃ (s1, s2, , x)

∣∣∣2 +
∣∣∣G̃(s1, s2, x)

∣∣∣2 ≤ K̃
(
1 + |x|2

)
.
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(H 2) (Hölder-type condition on F,G) : there exist α ∈ LS such that for all
t ∈ [0, T ] , x, y ∈ R,

|F (t, x)− F (t, y)|2 + |G(t, x)−G(t, y)|2 ≤ α
(
|x− y|2

)
.

(H̃ 2) (Hölder-type condition on F̃ , G̃) : there exist α̃ ∈ LS such that for all
(s1, s2) ∈ C2(T ), x, y ∈ R,∣∣∣F̃ (s1, s2, x)− F̃ (s1, s2, y)

∣∣∣2 +
∣∣∣G̃(s1, s2, x)− G̃(s1, s2, y)

∣∣∣2 ≤ α̃
(
|x− y|2

)
.

(H 3) ξ ∈ L2 (Ω,F0, P ) .
Next for a process U and α > 0 we define

‖U‖α = sup
s 6=t

|Ut − Us|
|t− s|α

, ‖U‖α = ‖U‖∞ + ‖U‖α .

Theorem 2.1 Suppose (H1)− (H3), (H̃ 1), (H̃2) are satisfied. Let {Xn
t }t∈[0,T ]

be the successive approximations defined by

X0
t = ξ, Xn+1

t = ξ +

∫ t

0

F (s,Xn
s )ds+

∫ t

0

G(s,Xn
s )dWs+∫

C2(t)

F̃ (s1, s2, X
n
s1

)ds1ds2 +

∫
C2(t)

G̃(s1, s2, X
n
s1

)dW̃s1dW̃s2 , 0 ≤ t ≤ T.

(a) Then the equation (2.1) has a pathwise unique solution {Xt}t∈[0,T ] such
that

E

(
sup
t≤T
|Xt|2

)
<∞. (2.2)

Moreover

lim
n→∞

E

(
sup
t≤T
|Xn

t −Xt|2
)

= 0. (2.3)

(b) In addition assume that one of the following two conditions is satisfied:
(b1) For some r > 1, E

(
|ξ|2r

)
<∞, either,

(b2) There exists α ∈ (0, 1) and a positive constant K1 such that∣∣∣G̃(s1, t2, x)− G̃(s1, t1, x)
∣∣∣ ≤ K |t1 − t2|α for all s1 ≤ ti ≤ T. (2.4)

Then for every 0 < β < min(1
2
, 2α) we have ‖Xn −X‖β

p−→
n→∞

0.

4



Proof. (a) Existence. By standart computation it follows that

sup
n
E

(
sup
t≤T
|Xn

t |
2

)
<∞. (2.5)

Next from (H2), (H̃2) we deduce

gm,n(t) := E

(
sup
s≤t
|Xm

s −Xn
s |

2

)
≤
∫ t

0

(α + α̃) (gm,n(s))ds,

limm,n→∞gm,n(t) ≤
∫ t

0

(α + α̃) (limm,n→∞gm,n(s))ds,

where from limm,n→∞gm,n(t) = 0.
Therefore there exists a continuous process {Xt}t∈[0,T ] such that

lim
n→∞

E

(
sup
t≤T
|Xn

t −Xt|2
)

= 0.

It is clear that X is a solution of (2.1).
Uniqueness. If {Xt}t∈[0,T ] , {Yt}t∈[0,T ] are solutions of (2.1) and denote δ(t) =

E
(
|Xt − Yt|2

)
then by (H2), (H̃2) we have

δ(t) ≤
∫ t

0

(α + α̃) (δ(s))ds,

and this implies δ(t) = 0.
(b) Assume (b1) is satisfied. Then in a standard manner it follows

sup
n
E

(
sup
t≤T
|Xn

t |
2r

)
<∞,

where from we get

E
(
|Xn

t −Xn
s |

2r) ≤ K2 (t− s)r , E
(
|Xt −Xs|2r

)
≤ K2 (t− s)r ,

and, if we define Y n = Xn −X, the previuos inequalities imply

E
(
|Y n
t − Y n

s |
2r) ≤ K3 (t− s)r . (2.6)
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As in [1], (2.6) and the Garcia-Rodemich-Rumsey criterion imply the result
(see also Lemma 8.27 of [15]).
Now assume that (b2) hold. Choose η > 0 such that β + η < 1

2
. Taking into

account the previous result from (a) all we need to show is that [Y n]β
p−→ 0,

or since for all µ, ε > 0,

P ([Y n]β > ε) ≤ P ([Y n]β+µ > εµ−η) + 2P
(
‖Xn −X‖∞ > εµβ

)
,

to show that

lim
M→∞

sup
n
P ([Y n]θ > M) = 0, ∀0 < θ < min(

1

2
, 2α).

By using (2.2), (2.5) we obtain

P ([Y n]θ > M) ≤ P (‖Xn‖∞ > M1) + P (‖X‖∞ > M1)+

P ([Y n]θ > M, ‖Xn‖∞ ≤M1, ‖X‖∞ ≤M1) ≤
K3

M2
1

+ P ([Y n]θ > M, ‖Xn‖∞ ≤M1, ‖X‖∞ ≤M1),

so we have to prove that

lim
M→∞

sup
n
P ([Y n]θ > M, ‖Xn‖∞ ≤M1, ‖X‖∞ ≤M1) = 0, ∀M1 > 0. (2.7)

Denote A = {‖Xn‖∞ ≤M1, ‖X‖∞ ≤M1} . Then we have

P ([Y n]θ > M,A) ≤ P

([∫ .

0

(G(s,Xn
s )−G(s,Xs)) dWs

]
θ

>
M −K4

√
1 +M2

1

2
, A

)
+

P

([∫
C2(.)

(
G̃(s1, s2, X

n
s1

)− G̃(s1, s2, Xs1)
)
dW̃s1dW̃s2

]
θ

>
M −K4

√
1 +M2

1

2
, A

)
,

and hence (2.7) follows if we prove that

lim
M→∞

sup
n
P

([∫ .

0

(G(s,Xn
s )−G(s,Xs)) dWs

]
θ

> M,A

)
= 0, (2.8)

lim
M→∞

sup
n
P

([∫
C2(.)

(
G̃(s1, s2, X

n
s1

)− G̃(s1, s2, Xs1)
)
dW̃s1dW̃s2

]
θ

> M,A

)
= 0.

(2.9)
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On the set A we have

|G(s,Xn
s )−G(s,Xs)| ≤ K5 (1 + ‖Xn‖∞ + ‖X‖∞) ≤ K5 (1 + 2M1) ,

and similarly ∣∣∣G̃(s1, s2, X
n
s1

)− G̃(s1, s2, Xs1)
∣∣∣ ≤ K5 (1 + 2M1) .

¿From Lemma 10.2.2 of [8] it follows that on A,[∫ .

0

(G(s,Xn
s )−G(s,Xs)) dWs

]
θ

≤ K6ζn,

where E (ζn1A) ≤ K7T
2. Therefore

P

([∫ .

0

(G(s,Xn
s )−G(s,Xs)) dWs

]
θ

> M,A

)
≤

P

(
A, ζn >

M

K6

)
≤ K6E (ζn)

M
≤ K8

M
−→
M→∞

0, uniformly in n.

Next define

In(t) =

∫ t

0

(
G̃(s1, t, X

n
s1

)− G̃(s1, t, Xs1)
)
dW̃s1 .

Then

P

([∫
C2(.)

(
G̃(s1, s2, X

n
s1

)− G̃(s1, s2, Xs1)
)
dW̃s1dW̃s2

]
θ

> M,A

)
≤

P

(
A, ‖In‖∞ ≤M2,

[∫ .

0

In(s)dW̃s

]
θ

> M

)
+ P (‖In‖∞ > M2, A) . (2.10)

Now from Theorem 2 of [11] or Theorem 2.4 of [12] it follows

P (‖In‖∞ > M2, A) ≤ exp
{
−K8(M1)M2

2

}
, (2.11)

and from Lemma 10.2.2 of [8]

P

(
A, ‖In‖∞ ≤M2,

[∫ .

0

In(s)dW̃s

]
θ

> M

)
≤ K9(M1,M2)

M
. (2.12)
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Finally from (2.10)-(2.12) we get (2.9). �

Theorem 2.2 (Existence of weak solutions) Assume that
(
F,G, F̃ , G̃

)
satisfy the hypotheses (H1), (H3), (H̃1). Moreover suppose that:
(i) For some r > 1, E

(
|ξ|2r

)
<∞.

(ii) F,G, F̃ , G̃ are continuous in all variables.
(iii) There exists α ∈ (0, 1) and a positive constant K̄ such that∣∣∣G̃(s1, t1, x)− G̃(s1, t2, x)

∣∣∣ ≤ K̄ |t1 − t2|α , ∀s1 ≤ ti ≤ T, x ∈ R.

Then (2.1) has a weak solution.

We need the following convergence result for double stochastic integrals.
Lemma 2.3. Let {V n

t }t∈[0,T ] , {Vt}t∈[0,T ] be Brownian motions and
{hn(s1, s2)}(s1,s2)∈C2(T ) , {h(s1, s2)}(s1,s2)∈C2(T ) be predictable processes such that

E

(∫
C2(T )

|hn(s1, s2)|2 ds1ds2

)
<∞, E

(∫
C2(T )

|h(s1, s2)|2 ds1ds2

)
<∞.

Assume that:
(1) For each t, V n

t

p−→ Vt.

(2) For each (s1, s2) ∈ C2(T ), hn(s1, s2)
p−→ h(s1, s2) and

lim
C→∞

sup
n
P (‖hn‖∞ > C) = 0. (2.13)

(3) There exists α ∈ (0, 2] and for every n there exists a nonnegative random
variable ξn such that

lim
C→∞

sup
n
P (ξn > C) = 0, (2.14)

∫ t1∧t2

0

|hn(s1, t1)− hn(s1, t2)|2 ds1 ≤ ξn |t1 − t2|α , ∀0 ≤ ti ≤ T. (2.15)

(4) For each ε > 0, 0 ≤ t ≤ T,

lim
h→0

lim
n→∞

sup
|s1−s2|≤h

0≤si≤t

P (|hn(s1, t)− hn(s2, t)| > ε) = 0. (2.16)
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Then ∫
C2(T )

hn(s1, s2)dV n
s1
dV n

s2

p−→
∫
C2(T )

h(s1, s2)dVs1dVs2 .

Proof. Define

Zn
t =

∫ t

0

hn(s1, t)dV
n
s1
, Zt =

∫ t

0

h(s1, t)dVs1 .

Then ∫
C2(T )

hn(s1, s2)dV n
s1
dV n

s2
=

∫ T

0

Zn
s dV

n
s ,

∫
C2(T )

h(s1, s2)dVs1dVs2 =

∫ T

0

ZsdVs.

By the convergence result for first order stochastic integrals due to Skorohod
(see [14]-page 32) we have

Zn
t

p−→ Zt, ∀0 ≤ t ≤ T.

Define A = {‖hn‖∞ ≤ C1, ξn ≤ C1} . Then from (2.13)-(2.15) and Theorem
2 of [11] it follows

lim
C→∞

sup
n
P (‖Zn‖∞ > C) ≤ P (‖Zn‖∞ > C,A) +

P (‖hn‖∞ > C1) + P (ξn > C1) ≤
exp

{
−γ(C1)C2

}
+ P (‖hn‖∞ > C1) + P (ξn > C1) −→ 0,

as C →∞, C1 →∞.

Next Lemma 10.2.2 of [8] yields

|Zn
t − Zn

s | ≤ ηn |t− s|α on A, (2.17)

where
sup
n
E (1Aηn) = C2 <∞. (2.18)

Next by using (2.17), (2.18) we obtain

P (‖Zn
t − Zn

s ‖ > ε) ≤ P (‖Zn
t − Zn

s ‖ > ε,A)+P (‖hn‖∞ > C1)+P (ξn > C1) ≤
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P
(
1Aηn > ε |t− s|−α

)
+ P (‖hn‖∞ > C1) + P (ξn > C1) ≤

|t− s|α

ε
E (1Aηn) + P (‖hn‖∞ > C1) + P (ξn > C1) ≤

C2 |t− s|α + P (‖hn‖∞ > C1) + P (ξn > C1) ,

so that
lim
h→0

sup
n

sup
|t−s|≤h
0≤s,t≤T

P (|Zn
t − Zn

s | > ε) ≤

sup
n
P (‖hn‖∞ > C1) + sup

n
P (ξn > C1) −→ 0 as C1 →∞.

Applying once again the result of Skorohod ( [14]-page 32) we obtain that∫ T

0

Zn
s dV

n
s

p−→
∫ T

0

ZsdVs. �

Proof of Theorem 2.2. Choose a sequence
(
Fn, Gn, F̃n, G̃n

)
of continuous

functions such that
(i1)

(
Fn, Gn, Fn, G̃n

)
satisfy (H1),(H̃1) uniformly with respect to n.

(i2)
(
Fn, Gn, F̃n, G̃n

)
are Lipschitz in the last variable.

(i3) For each s, s1, s2,

Fn(s, x) −→ F (s, x), Gn(s, x) −→ G(s, x),

F̃n(s1, s2, x) −→ F̃ (s1, s2, x), G̃n(s1, s2, x) −→ G̃(s1, s2, x),

uniformly for x in compact sets.
Let (by Theorem 2.1) Xn

t be the strong solution of

Xn
t = ξ +

∫ t

0

Fn(s,Xn
s )ds+

∫ t

0

Gn(s,Xn
s )dWs+∫

C2(t)

F̃n(s1, s2, X
n
s1

)ds1ds2 +

∫
C2(t)

G̃n(s1, s2, X
n
s1

)dW̃s1dW̃s2 , 0 ≤ t ≤ T.

¿From (i), (H1),(H̃1) we deduce

sup
n
E
(
|Xn

t |
2r) <∞,
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and this implies

E
(
|Xn

t −Xn
s |

2r) ≤ K1 |t− s|r , ∀n, s, t.

Therefore on some probability space

(
Ω̂,
∧
F , P̂

)
there exist

(
ξ̂n, X̂

n, Ŵ n, Ṽ n
)
,(

ξ̂, X̂, Ŵ , Ṽ
)

such that:

(a) For every n, the laws of
(
ξ̂n, X̂

n, Ŵ n, Ṽ n
)

and
(
ξ,Xn,W, Ŵ

)
coincide.

(b) For some subsequence (nk) (for simplicity we assume nk = k for all k ),

ξ̂n
a.s.−→ ξ, X̂n a.s.−→ X̂, Ŵ n a.s.−→ Ŵ , Ṽ n a.s.−→ Ṽ ,

uniformly on every compact interval.
If we define

∧
F
n

t = B
(
ξ̂n, X̂

n
s , Ŵ

n
s , Ṽ

n
s : s ≤ t

)
,
∧
F t= B

(
ξ̂, X̂s, Ŵs, Ṽs : s ≤ t

)
,

then it is clear that Ŵ n
t , Ṽ

n(resp. Ŵt, Ṽ ) are
∧
F
n

t (resp.
∧
F t) Brownian

motions.
Also we have (we omit the details)

X̂n
t = ξ̂n +

∫ t

0

Fn(s, X̂n
s )ds+

∫ t

0

Gn(s, X̂n
s )dŴ n

s +

∫
C2(t)

F̃n(s1, s2, X̂
n
s1

)ds1ds2+

∫
C2(t)

G̃n(s1, s2, X̂
n
s1

)dṼ n
s1
dṼ n

s2
, 0 ≤ t ≤ T. (2.19)

Next, it is easy to see that for each t,∫ t

0

Fn(s, X̂n
s )ds

p−→
∫ t

0

F (s, X̂s)ds∫
C2(t)

F̃n(s1, s2, X̂
n
s1

)ds1ds2
p−→
∫
C2(t)

F̃ (s1, s2, X̂s1)ds1ds2,

and by [14], page 32,∫ t

0

Gn(s, X̂n
s )dŴ n

s

p−→
∫ t

0

G(s, X̂s)dŴ
n
s .
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Finally by Lemma 2.3 we also have∫
C2(t)

G̃n(s1, s2, X̂
n
s1

)dṼ n
s1
dṼ n

s2

p−→
∫
C2(t)

G̃(s1, s2, X̂s1)dṼs1dṼs2 .

It follows we can pass to the limit in (2.19) and obtain that

X̂t = ξ̂ +

∫ t

0

F (s, X̂s)ds+

∫ t

0

G(s, X̂s)dŴs+∫
C2(t)

F̃ (s1, s2, X̂s1)ds1ds2 +

∫
C2(t)

G̃(s1, s2, X̂s1)dṼs1dṼs2 , 0 ≤ t ≤ T,

i.e., X̂ is a weak solution of (2.1). �

3 Fractional Step Method. A Comparison

Result

In this section we assume that:
(i) The filtration (Ft)0≤t≤T is of the form Ft = Ft ∨ F̃t and Ft, F̃t are
independent for all t ≥ 0.
(ii) Wt is Ft -Brownian motion and W̃t is F̃t-Brownian motion.
We introduce now the fractional step approximations associated to (2.1).
Let ∆ : 0 = t0 < t1 < ....tn = T be a partition of [0, T ] with the norm
‖∆‖ = max1≤i≤n (ti − ti−1) .
We define the fractional step approximations as the processes {Z∆ (t)}0≤t≤T ,
{Y∆ (t)}0≤t≤T defined by the following recursive procedure:
Z∆ (0) = ξ and for t ∈ [ti−1, ti) , i ≥ 1,{

Z∆ (t) = Z∆ (ti−1) +
∫ t
ti−1

F (s, Z∆ (s))ds+
∫ t
ti−1

G(s, Z∆ (s))dWs

Y∆ (ti−1) = Z∆ (ti−) ,

(3.20)

Y∆ (t) = Y∆ (ti−1) +
∫ t
ti−1

∫ ti−1

0
F̃ (s1, s2, Y∆(s1))ds1ds2

+
∫
C2(ti−1,t)

F̃ (s1, s2, Y∆(s1))ds1ds2

+
∫ t
ti−1

∫ ti−1

0
G̃(s1, s2, Y∆(s1))dW̃s1dW̃s2

+
∫
C2(ti−1,t)

G̃(s1, s2, Y∆(s1))dW̃s1dW̃s2

Z∆ (ti) = Y∆ (ti−) .

(3.21)
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Lemma 3.1 (see [13]) Let 0 ≤ δ < T, b, c > 0, with 4cδ < 1 and f :
[0, T ] −→ R+ be such that

f(t+ s)− f(t) ≤ (s+ δ) (b+ cf(t+ s)) , ∀s, t.

Then

f(t) ≤
(
f(0) +

b

c

)
e4ct+1 − b

c
.

Proposition 3.2 (a) For every t ∈ [ti−1, ti) , i ≥ 1,the fractional step
approximations (Z∆ (t) , Y∆ (t)) is solution of the system of double stochastic
equations

Z∆ (t) = ξ +
∫ t

0
F (s, Z∆ (s))ds+

∫ t
0
G(s, Z∆ (s))dWs

+
∫
C2(ti−1)

F̃ (s1, s2, Y∆(s1))ds1ds2 +
∫
C2(ti−1)

G̃(s1, s2, Y∆(s1))dW̃s1dW̃s2

Y∆ (t) = ξ +
∫ ti

0
F (s, Z∆ (s))ds+

∫ ti
0
G(s, Z∆ (s))dWs

+
∫
C2(t)

F̃ (s1, s2, Y∆(s1))ds1ds2 +
∫
C2(t)

G̃(s1, s2, Y∆(s1))dW̃s1dW̃s2 ,

(3.22)
and Z∆ (t) (resp. Y∆ (t)) is Ftti−1

= Ft ∨ F̃ti−1
(resp. Ftit = Fti ∨ F̃t )

measurable.
(b) There exist δ0 > 0 and constants γi = γi

(
E(|ξ|2), T,K, K̃

)
< ∞, i =

1, 2, 3, such that for every ‖∆‖ ≤ δ0,

E

(
sup

0≤t≤T
|Z∆ (t)|2

)
≤ γ1, (3.23)

E

(
sup

0≤t≤T
|Y∆ (t)|2

)
≤ γ2, (3.24)

sup
0≤t≤T

E
(
|Z∆ (t)− Y∆ (t)|2

)
≤ γ3 ‖∆‖ . (3.25)

Proof. Define for t ∈ [ti−1, ti)

f∆(t) = C1

{
E
(
|ξ|2
)

+

∫ ti

0

E
(
|F (s, Z∆ (s))|2 + |G (s, Z∆ (s))|2

)
ds+

∫
C2(ti)

E

(∣∣∣F̃ (s1, s2, Y∆ (s1))
∣∣∣2 +

∣∣∣G̃ (s1, s2, Y∆ (s1))
∣∣∣2) ds1ds2

}
,

where C1 is a constant sufficiently large, which do not depent on ∆.
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Of course we have

E

(
sup

0≤s≤t
|Z∆ (s)|2

)
≤ f∆(t), E

(
sup

0≤s≤t
|Y∆ (s)|2

)
≤ f∆(t). (3.26)

Now let t ∈ [ti−1, ti) , t+ s ∈ [tj−1, tj) , i ≤ j.
If i = j then f∆(t+ s)− f∆(t) = 0. If i < j then by (H1), (H̃1) and (3.26) we
have for some constants a1, a2, a3 > 0, which are independent of ∆,

f∆(t+ s)− f∆(t) ≤
∫ tj

ti

(a1 + a2f∆(tj−1) ds ≤

∫
C2(tj)\C2(ti)

(a1 + a2f∆(tj−1) ds1ds2 ≤

a3 (a1 + a2f∆(t+ s) (tj − ti + λ (C2(tj)\C2(ti))) ≤

a3 (a1 + a2f∆(t+ s) (s+ ‖∆‖) .

Then by Lemma 3.1 we get (3.23), (3.24).

Next from (3.22),
(
H̃1

)
,
(
H̃2

)
and (3.23), (3.24) it follows easily (3.25). �

Theorem 3.3 Assume that (H1)−(H3) ,
(
H̃1

)
,
(
H̃2

)
are satisfied. If {Xt}0≤t≤T

is the unique solution of (2.1) then

lim
‖∆‖−→0

sup
0≤t≤T

E
(
|Z∆ (t)−Xt|2

)
= 0, (3.27)

lim
‖∆‖−→0

sup
0≤t≤T

E
(
|Y∆ (t)−Xt|2

)
= 0. (3.28)

Proof. Define

F̃ (s1, s2, Z∆, Y∆) =

{
F̃ (s1, s2, Y∆(s1)− F̃ (s1, s2, Z∆(s1), (s1, s2) ∈ C2(ti−1)

−F̃ (s1, s2, Z∆(s1), (s1, s2) ∈ C2(ti−1, ti) ∪R∆,

and G̃(s1, s2, Z∆, Y∆) similarly, where R∆ = [0, ti−1)× [ti−1, ti) .
Then we have the equality

Z∆ (t) =

∫ t

0

F (s, Z∆ (s))ds+

∫ t

0

G(s, Z∆ (s))dWs+
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∫
C2(t)

F̃ (s1, s2, Z∆(s1))ds1ds2 +

∫
C2(t)

G̃(s1, s2, Y∆(s1))dW̃s1dW̃s2 + γ∆(t),

(3.29)
where

γ∆(t) =

∫
C2(t)

F̃ (s1, s2, Z∆, Y∆)ds1ds2 +

∫
C2(t)

G̃(s1, s2, Z∆, Y∆)dW̃s1dW̃s2 .

¿From (2.1) and (3.29) it follows

E
(
|Z∆ (t)−Xt|2

)
≤ C2

{
E
(
|γ∆(t)|2

)
+

∫ t

0

(α + α̃)
(
E
(
|Z∆ (s)−Xs|2

))
ds

}
(3.30)

and (H1), (H̃1), (3.23)-(3.25) yield for ‖∆‖ ≤ δ0,

sup
t≤T

E
(
|γ∆(t)|2

)
≤ C3 ‖∆‖ .

¿From (3.30) and Gronwall’s lemma we deduce

g(t) := lim
‖∆‖→0

sup
s≤t

E
(
|Z∆ (s)−Xs|2

)
≤ C4

∫ t

0

(α + α̃) (E (g(s))) ds,

and hence g(t) ≡ 0. �

Definition 3.4. Let (Fi, Gi)i=1,2 satisfy (H1), (H2),
(
H̃1

)
,
(
H̃2

)
.We say

that the comparison principle hold for (Fi, Gi)i=1,2 if given two initial con-
ditions ξi, i = 1, 2, ( ξi are F0-measurable) with ξ1 ≤ ξ2 a.s. and strong
solutions {Xi(t)} of the Itô equations

Xi(t) = ξi +

∫ t

0

Fi(s,Xi(s))ds+

∫ t

0

Gi(s,Xi(s))dWs, 0 ≤ t ≤ T,

then X1(t) ≤ X2(t) a.s. for every t ≥ 0.

Theorem 3.5 (comparison). Let (ξi, Fi, Gi)i=1,2 satisfy the hypotheses (H1)−
(H3),

(
H̃1

)
,
(
H̃2

)
and let G̃(s1, s2) : C2(T ) −→ R be a measurable and

bounded function.
Let {Xi(t)} be the unique solution of the double stochastic equation with
additive double noise
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Xi(t) = ξi +

∫ t

0

Fi(s,Xi(s))ds+

∫ t

0

Gi(s,Xi(s))dWs+∫
C2(t)

F̃i(s1, s2, Xi(s1))ds1ds2 +

∫
C2(t)

G̃(s1, s2)dW̃s1dW̃s2 , 0 ≤ t ≤ T. (3.31)

Moreover suppose that:
(1) ξ1 ≤ ξ2 a.s..
(2) The comparison principle hold for (Fi, Gi)i=1,2 .

(3) F̃1(s1, s2, x) ≤ F̃2(s1, s2, y) if x ≤ y, for all si.
Then X1(t) ≤ X2(t) a.s. for every t ≥ 0.

Proof. By induction over the intervals [ti−1, ti) , i = 1, n, it is easily seen
that the fractional step approximations satisfy

Z1,∆(t) ≤ Z2,∆(t), Y1,∆(t) ≤ Y2,∆(t), P -as for all t,

and passing to the limit (by Theorem 3.2) we obtain the conclusion. �

Remark 3.6 The comparison result given by the previous Theorem is more
useful if for the first order Itô equation the comparison principle holds only
for markovian coefficients and not for functional ones.
Comparison results for Itô equations can be found in [5] (and the references
therein), [7], [9].
It should be interesting to extend the Theorem 3.5 to double stochastic
Volterra equations, by using comparison results for first order stochastic
Volterra equations as proven in [?], [17].

Theorem 3.7 Let (ξ, F,G) satisfy the hypotheses (H1)− (H3),
(
H̃1

)
,
(
H̃2

)
and let F̃ (s1, s2, x) : C2(T ) × R −→ R be bounded and continuous and
G̃(s1, s2) : C2(T ) −→ R be a measurable and bounded function.
Then the double stochastic equation

Xt = ξ +

∫ t

0

F (s,Xs)ds+

∫ t

0

G(s,Xs)dWs+∫
C2(t)

F̃ (s1, s2, Xs1)ds1ds2 +

∫
C2(t)

G̃(s1, s2)dW̃s1dW̃s2 , 0 ≤ t ≤ T, (3.32)
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has a strong solution.

Proof. Choose a sequence F̃n(s1, s2, x) of continuous, bounded and Lipschitz
in x, which converges decreasing to F̃ (s1, s2, x).
Let Xn

t be the strong solutions of

Xn
t = ξ +

∫ t

0

F (s,Xn
s )ds+

∫ t

0

G(s,Xn
s )dWs+∫

C2(t)

F̃n(s1, s2, X
n
s1

)ds1ds2 +

∫
C2(t)

G̃(s1, s2)dW̃s1dW̃s2 , 0 ≤ t ≤ T.

It is clear that the comparison principle hold for (F,G) (see for example [7]).
Thenb by Theorem 3.5 we have

X1
t ≥ X2

t ≥ ... ≥ Xn
t ≥ ..... P -a.s for all t ≥ 0.

It is easily seen that limn→∞X
n
t = Xt is a solution of (3.32). �

Next we give an example (Lemma 3.9) which shows that the comparison
principle of Theorem 3.5 is not satisfied if the diffusion coefficient of the
double stochastic integral depends on the state variable.
For f ∈ L2

loc(R+) and 0 ≤ t ≤ T we define

Zf
t = exp

{∫ t

0

f(s)dWs −
1

2

∫ t

0

|f(s)|2 ds
}
,

Φf
t = exp

{
−2

∫ t

0

f(s)dWs

}
.

Lemma 3.8 (a) The unique solution of the linear double stochastic equation

Xf
t = 1 +

∫
C2(t)

f(s1)f(s2)Xf
s1
dW̃s1dW̃s2 , 0 ≤ t ≤ T, (3.33)

is given by

Xf
t =

1

2
Zf
t

(
1 + Φf

t

)
=

1

2

(
Zf
t + Z

(−f)
t

)
. (3.34)

(b) If (Ht) is a continuous semimartingale, then the unique solution of the
double stochastic equation

Xt = Ht +

∫
C2(t)

f(s1)f(s2)Xs1dW̃s1dW̃s2 , 0 ≤ t ≤ T, (3.35)

17



is given by

Xt = Xf
t H0 +Xf

t

∫ t

0

(
Xf
s dHs − f(s)d

[
H, W̃

]
s

)
(∣∣∣Xf

s

∣∣∣2 − ∣∣∣Y f
s

∣∣∣2)2

−Y f
t

∫ t

0

Y f
s dHs(∣∣∣Xf

s

∣∣∣2 − ∣∣∣Y f
s

∣∣∣2)2 , (3.36)

Y f
t = Xf

t − 1, (3.37)

where [., .] denotes the quadratic variation.

Proof. (a) We have∫
C2(t)

f(s1)f(s2)Xf
s1
dW̃s1dW̃s2 =

∫ t

0

f(s2)

(∫ s2

0

f(s1)Xf
s1
dW̃s1

)
dW̃s2 =

1

2

∫ t

0

f(s2)

[∫ s2

0

f(s1)
(
Zf
s1

+ Z(−f)
s1

)
dW̃s1

]
dW̃s2 =

1

2

∫ t

0

f(s2)
(
Zf
s2
− 1− Z(−f)

s1
+ 1
)
dW̃s2 =

1

2

(
Zf
t − 1 + Z(−f)

s1
− 1
)

= Xf
t − 1.

(b) The previous computation shows that

Y f
t =

∫ t

0

f(s1)Xf
s1
dW̃s1 = Xf

t − 1.

Define

f̃(t) =

(
f(t) 0
0 f(t)

)
, Vt =

(
Xf
t Y f

t

Y f
t Xf

t

)
,

UT
t =

(
Xf
t , Y

f
t

)
, X̃T

t = (Xt, Yt) , H̃
T
t = (Ht, 0) .
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Then

Ut = e1 +

∫ t

0

f̃(s)UsdW̃s,

X̃t = H̃t +

∫ t

0

f̃(s)X̃sdW̃s.

By Theorem 4 of [19] it follows that

X̃t = VtH̃0 + Vt

∫ t

0

V −1
s

(
Xf
s dHs − f(s)d

[
H, W̃

]
s

)
−Y f

t

∫ t

0

Y f
s dHs(∣∣∣Xf

s

∣∣∣2 − ∣∣∣Y f
s

∣∣∣2)2 ,

which implies (3.36). �
We consider the following ”pure” double stochastic equations

X1(t) = 1 +

∫
C2(t)

X1(s1)dW̃s1dW̃s2 ,

X2(t) = 1 +
t2

2
+

∫
C2(t)

X2(s1)dW̃s1dW̃s2 .

By Lemma 3.8 with f ≡ 1, Ht = t2

2
we have

X1(t) =
1

2

(
Z1
t + Z

(−1)
t

)
, X2(t) = X1(t) +R(t),

R(t) =

∫ t

0

2X1(s)ds

(2X1(s)− 1)2 +

X1(t)

∫ t

0

sds

(2X1(s)− 1)2 −
∫ t

0

sds

(2X1(s)− 1)2 .

Lemma 3.9 We have that

lim
t−→∞

P (R(t) < 0) = 1,

Therefore the comparison principle is not satisfied for the solutions X1, X2(Note
that in the present situation ξ1 = ξ2 = 1, F̃1 = 0 < F̃2 = 1).
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Proof. It is known that

lim
t−→∞

Z1
t = lim

t−→∞
Z

(−1)
t = 0,

and hence limt−→∞ X1(t) = 0.
Define

δ(t) =

[∫ t

0

sX1(s)ds

(2X1(s)− 1)2

] [∫ t

0

sds

(2X1(s)− 1)2

]−1

.

Then
P (R(t) < 0) = P

(
1−X1(t) > δ(t)

)
a.s.,

and all we need to show is that limt−→∞ δ(t) = 0 a.s.
Obviously

lim
t−→∞

∫ t

0

sds

(2X1(s)− 1)2 =∞ a.s.

Assume that

lim
t−→∞

∫ t

0

sds

(2X1(s)− 1)2 = σ.

If σ <∞ then limt−→∞ δ(t) = 0 and if σ = 0 tha by l’Hôspital rule

lim
t−→∞

δ(t) = lim
t−→∞

X1(t) = 0. �
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